Handbook_Volume III

18 M. Belderbos, “The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation.,” Bone Marrow Transplant, Jun. 2022, doi: 10.1038/s41409022-01728-0. [34] M. Acar et al., “Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal.,” Nature, vol. 526, no. 7571, pp. 126–30, Oct. 2015, doi: 10.1038/nature15250. [35] C. Christodoulou et al., “Live-animal imaging of native haematopoietic stem and progenitor cells.,” Nature, vol. 578, no. 7794, pp. 278–283, 2020, doi: 10.1038/s41586-020-1971-z. [36] J. A. Spencer et al., “Direct measurement of local oxygen concentration in the bone marrow of live animals.,” Nature, vol. 508, no. 7495, pp. 269–73, Apr. 2014, doi: 10.1038/nature13034. [37] A. N. Tikhonova et al., “The bone marrow microenvironment at single-cell resolution.,” Nature, vol. 569, no. 7755, pp. 222–228, 2019, doi: 10.1038/s41586-019-1104-8. [38] N. Baryawno et al., “A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia.,” Cell, vol. 177, no. 7, pp. 1915-1932.e16, 2019, doi: 10.1016/j.cell.2019.04.040. [39] C. Baccin et al., “Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization.,” Nat Cell Biol, vol. 22, no. 1, pp. 38–48, 2020, doi: 10.1038/s41556-019-0439-6. [40] L. Ding, T. L. Saunders, G. Enikolopov, and S. J. Morrison, “Endothelial and perivascular cells maintain haematopoietic stem cells.,” Nature, vol. 481, no. 7382, pp. 457–62, Jan. 2012, doi: 10.1038/nature10783. [41] A. Hérault et al., “Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis.,” Nature, vol. 544, no. 7648, pp. 53–58, 2017, doi: 10.1038/nature21693. [42] J. Zhang et al., “In situ mapping identifies distinct vascular niches for myelopoiesis.,” Nature, vol. 590, no. 7846, pp. 457–462, 2021, doi: 10.1038/s41586-021-03201-2. [43] S. Comazzetto, M. M. Murphy, S. Berto, E. Jeffery, Z. Zhao, and S. J. Morrison, “Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow.,” Cell Stem Cell, vol. 24, no. 3, pp. 477-486.e6, 2019, doi: 10.1016/j.stem.2018.11.022. [44] L. Ding and S. J. Morrison, “Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches.,” Nature, vol. 495, no. 7440, pp. 231–5, Mar. 2013, doi: 10.1038/nature11885. [45] S. Pinho, T. Marchand, E. Yang, Q. Wei, C. Nerlov, and P. S. Frenette, “Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches.,” Dev Cell, vol. 44, no. 5, pp. 634-641.e4, 2018, doi: 10.1016/j.devcel.2018.01.016. [46] B. Shen et al., “A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis.,” Nature, vol. 591, no. 7850, pp. 438–444, 2021, doi: 10.1038/s41586-021-03298-5. [47] T. Itkin et al., “Distinct bone marrow blood vessels differentially regulate haematopoiesis.,” Nature, vol. 532, no. 7599, pp. 323–8, Apr. 2016, doi: 10.1038/nature17624. [48] J. Fujisaki et al., “In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche.,” Nature, vol. 474, no. 7350, pp. 216–9, Jun. 2011, doi: 10.1038/nature10160. [49] A. T. Hooper et al., “Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells.,” Cell Stem Cell, vol. 4, no. 3, pp. 263–74, Mar. 2009, doi: 10.1016/j.stem.2009.01.006. [50] B. O. Zhou, L. Ding, and S. J. Morrison, “Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1.,” Elife, vol. 4, p. e05521, Mar. 2015, doi: 10.7554/eLife.05521. [51] Q. Chen et al., “Apelin+ Endothelial Niche Cells Control Hematopoiesis and Mediate Vascular Regeneration after Myeloablative Injury.,” Cell Stem Cell, vol. 25, no. 6, pp. 768-783.e6, Dec. 2019, doi: 10.1016/j.stem.2019.10.006. [52] B. Heissig et al., “Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand.,” Cell, vol. 109, no. 5, pp. 625–37, May 2002, doi: 10.1016/s0092-8674(02)00754-7. [53] E. Bowers, A. Slaughter, P. S. Frenette, R. Kuick, O. M. Pello, and D. Lucas, “Granulocyte-derived TNF∂promotes vascular and hematopoietic regeneration in the bone marrow.,” Nat Med, vol. 24, no. 1, pp. 95–102, 2018, doi: 10.1038/nm.4448. [54] B. O. Zhou et al., “Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.,” Nat Cell Biol, vol. 19, no. 8, pp. 891–903, Aug. 2017, doi: 10.1038/ ncb3570. [55] O. Naveiras, V. Nardi, P. L. Wenzel, P. v Hauschka, F. Fahey, and G. Q. Daley, “Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment.,” Nature, vol. 460, no. 7252, pp. 259–63, Jul. 2009, doi: 10.1038/nature08099. [56] T. H. Ambrosi et al., “Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration.,” Cell Stem Cell, vol. 20, no. 6, pp. 771-784.e6, 2017, doi: 10.1016/j.stem.2017.02.009. [57] C. N. Inra et al., “A perisinusoidal niche for extramedullary haematopoiesis in the spleen.,” Nature, vol. 527, no. 7579, pp. 466–471, Nov. 2015, doi: 10.1038/nature15530. [58] N. Mende et al., “Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans.,” Blood, vol. 139, no. 23, pp. 3387–3401, 2022, doi: 10.1182/blood.2021013450. [59] H. Takizawa, S. Boettcher, and M. G. Manz, “Demand-adapted regulation of early hematopoiesis in infection and inflammation.,” Blood, vol. 119, no. 13, pp. 2991–3002, Mar. 2012, doi: 10.1182/ blood-2011-12-380113. [60] M. T. Baldridge, K. Y. King, N. C. Boles, D. C. Weksberg, and M. A. Goodell, “Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection.,” Nature, vol. 465, no. 7299, pp. 793–7, Jun. 2010, doi: 10.1038/nature09135. [61] M. A. G. Essers et al., “IFNalpha activates dormant haematopoietic stem cells in vivo.,” Nature, vol. 458, no. 7240, pp. 904–8, Apr. 2009, doi: 10.1038/nature07815. [62] S. Massberg et al., “Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues.,” Cell, vol. 131, no. 5, pp. 994–1008, Nov. 2007, doi: 10.1016/j.cell.2007.09.047. [63] A. Batsivari, M. L. R. Haltalli, D. Passaro, C. Pospori, C. lo Celso, and D. Bonnet, “Dynamic responses of the haematopoietic stem cell niche to diverse stresses.,” Nat Cell Biol, vol. 22, no. 1, pp. 7–17, 2020, doi: 10.1038/s41556-019-0444-9. [64] D. Passaro et al., “Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia.,” Cancer Cell, vol. 32, no. 3, pp. 324-341.e6, 2017, doi: 10.1016/j. ccell.2017.08.001. [65] D. Duarte et al., “Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML.,” Cell Stem Cell, vol. 22, no. 1, pp. 64-77.e6, 2018, doi: 10.1016/j. stem.2017.11.006. [66] A. M. Hughes, V. Kuek, R. S. Kotecha, and L. C. Cheung, “The Bone Marrow Microenvironment in B-Cell Development and Malignancy.,” Cancers (Basel), vol. 14, no. 9, Apr. 2022, doi: 10.3390/ cancers14092089. [67] M. H. G. P. Raaijmakers et al., “Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia.,” Nature, vol. 464, no. 7290, pp. 852–7, Apr. 2010, doi: 10.1038/nature08851. [68] A. Kode et al., “Leukaemogenesis induced by an activating ß-catenin mutation in osteoblasts.,” Nature, vol. 506, no. 7487, pp. 240–4, Feb. 2014, doi: 10.1038/nature12883. [69] H. Medyouf et al., “Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit.,” Cell Stem Cell, vol. 14, no. 6, pp. 824–37, Jun. 2014, doi: 10.1016/j.stem.2014.02.014. [70] I. M. Ghobrial, A. Detappe, K. C. Anderson, and D. P. Steensma, “The bone-marrow niche in MDS and MGUS: implications for AML and MM.,” Nat Rev Clin Oncol, vol. 15, no. 4, pp. 219–233, 2018, doi: 10.1038/nrclinonc.2017.197. [71] R. D. Schreiber, L. J. Old, and M. J. Smyth, “Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion.,” Science, vol. 331, no. 6024, pp. 1565–70, Mar. 2011, doi: 10.1126/science.1203486.