17 Ringraziamenti Desidero ringraziare Erika Zonari e Roberta Scrimieri, SR-Tiget, per i loro suggerimenti, per l’aiuto nel disegno delle figure e per la lettura critica del manoscritto. hematopoietic differentiation landscapes from single-cell RNA sequencing.,” Blood, vol. 133, no. 13, pp. 1415–1426, 2019, doi: 10.1182/blood-2018-08-835355. [17] F. Paul et al., “Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors.,” Cell, vol. 163, no. 7, pp. 1663–77, Dec. 2015, doi: 10.1016/j.cell.2015.11.013. [18] A. E. Rodriguez-Fraticelli et al., “Clonal analysis of lineage fate in native haematopoiesis.,” Nature, vol. 553, no. 7687, pp. 212–216, 2018, doi: 10.1038/nature25168. [19] L. Velten et al., “Human haematopoietic stem cell lineage commitment is a continuous process.,” Nat Cell Biol, vol. 19, no. 4, pp. 271–281, 2017, doi: 10.1038/ncb3493. [20] A.-C. Villani et al., “Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors.,” Science, vol. 356, no. 6335, 2017, doi: 10.1126/science.aah4573. [21] G. Ferrari, A. J. Thrasher, and A. Aiuti, “Gene therapy using haematopoietic stem and progenitor cells.,” Nat Rev Genet, vol. 22, no. 4, pp. 216–234, 2021, doi: 10.1038/s41576-020-00298-5. [22] A. Calabria et al., “y-TRIS: a graph-algorithm for comprehensive identification of vector genomic insertion sites.,” Bioinformatics, vol. 36, no. 5, pp. 1622–1624, 2020, doi: 10.1093/bioinformatics/btz747. [23] A. Biffi et al., “Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.,” Science, vol. 341, no. 6148, p. 1233158, Aug. 2013, doi: 10.1126/science.1233158. [24] A. Aiuti et al., “Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome.,” Science, vol. 341, no. 6148, p. 1233151, Aug. 2013, doi: 10.1126/science.1233151. [25] L. Biasco et al., “In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases.,” Cell Stem Cell, vol. 19, no. 1, pp. 107–19, 2016, doi: 10.1016/j.stem.2016.04.016. [26] S. Scala et al., “Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans.,” Nat Med, vol. 24, no. 11, pp. 1683–1690, 2018, doi: 10.1038/s41591-018-0195-3. [27] K. B. Kaufmann et al., “A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness.,” Nat Immunol, vol. 22, no. 6, pp. 723–734, 2021, doi: 10.1038/ s41590-021-00925-1. [28] E. Six et al., “Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs.,” Blood, vol. 135, no. 15, pp. 1219–1231, 2020, doi: 10.1182/ blood.2019002350. [29] H. Lee-Six et al., “Population dynamics of normal human blood inferred from somatic mutations.,” Nature, vol. 561, no. 7724, pp. 473–478, 2018, doi: 10.1038/s41586-018-0497-0. [30] V. W. C. Yu and D. T. Scadden, “Hematopoietic Stem Cell and Its Bone Marrow Niche.,” Curr Top Dev Biol, vol. 118, pp. 21–44, 2016, doi: 10.1016/bs.ctdb.2016.01.009. [31] I. M. Ghobrial, A. Detappe, K. C. Anderson, and D. P. Steensma, “The bone-marrow niche in MDS and MGUS: implications for AML and MM.,” Nat Rev Clin Oncol, vol. 15, no. 4, pp. 219–233, 2018, doi: 10.1038/nrclinonc.2017.197. [32] S. Comazzetto, B. Shen, and S. J. Morrison, “Niches that regulate stem cells and hematopoiesis in adult bone marrow.,” Dev Cell, vol. 56, no. 13, pp. 1848–1860, 2021, doi: 10.1016/j.devcel.2021.05.018. [33] F. Peci, L. Dekker, A. Pagliaro, R. van Boxtel, S. Nierkens, and Bibliografia [1] A. Wilson et al., “Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair.,” Cell, vol. 135, no. 6, pp. 1118–29, Dec. 2008, doi: 10.1016/j. cell.2008.10.048. [2] E. Laurenti et al., “CDK6 levels regulate quiescence exit in human hematopoietic stem cells.,” Cell Stem Cell, vol. 16, no. 3, pp. 302–13, Mar. 2015, doi: 10.1016/j.stem.2015.01.017. [3] N. Cabezas-Wallscheid et al., “Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy.,” Cell, vol. 169, no. 5, pp. 807-823.e19, May 2017, doi: 10.1016/j.cell.2017.04.018. [4] H. E. Broxmeyer et al., “Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults.,” Proc Natl Acad Sci U S A, vol. 89, no. 9, pp. 4109–13, May 1992, doi: 10.1073/pnas.89.9.4109. [5] J. C. Wang, M. Doedens, and J. E. Dick, “Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay.,” Blood, vol. 89, no. 11, pp. 3919–24, Jun. 1997. [6] A. Maximow, “Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere.,” Folia Haematol. (Frankf.), vol. 8, pp. 125–134, 1909. [7] E. LORENZ, D. UPHOFF, T. R. REID, and E. SHELTON, “Modification of irradiation injury in mice and guinea pigs by bone marrow injections.,” J Natl Cancer Inst, vol. 12, no. 1, pp. 197–201, Aug. 1951. [8] E. D. THOMAS, H. L. LOCHTE, W. C. LU, and J. W. FERREBEE, “Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy.,” N Engl J Med, vol. 257, no. 11, pp. 491–6, Sep. 1957, doi: 10.1056/NEJM195709122571102. [9] J. E. TILL, E. A. MCCULLOCH, and L. SIMINOVITCH, “A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS.,” Proc Natl Acad Sci U S A, vol. 51, pp. 29–36, Jan. 1964, doi: 10.1073/ pnas.51.1.29. [10] S. Doulatov, F. Notta, E. Laurenti, and J. E. Dick, “Hematopoiesis: a human perspective.,” Cell Stem Cell, vol. 10, no. 2, pp. 120–36, Feb. 2012, doi: 10.1016/j.stem.2012.01.006. [11] E. Laurenti and B. Göttgens, “From haematopoietic stem cells to complex differentiation landscapes.,” Nature, vol. 553, no. 7689, pp. 418–426, 2018, doi: 10.1038/nature25022. [12] F. Notta et al., “Distinct routes of lineage development reshape the human blood hierarchy across ontogeny.,” Science, vol. 351, no. 6269, p. aab2116, Jan. 2016, doi: 10.1126/science. aab2116. [13] R. Drissen, S. Thongjuea, K. Theilgaard-Mönch, and C. Nerlov, “Identification of two distinct pathways of human myelopoiesis.,” Sci Immunol, vol. 4, no. 35, 2019, doi: 10.1126/sciimmunol. aau7148. [14] D. A. Jaitin, H. Keren-Shaul, N. Elefant, and I. Amit, “Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics,” Seminars in Immunology, vol. 27, no. 1, pp. 67–71, Feb. 2015, doi: 10.1016/j.smim.2015.01.002. [15] E. Papalexi and R. Satija, “Single-cell RNA sequencing to explore immune cell heterogeneity.,” Nat Rev Immunol, vol. 18, no. 1, pp. 35–45, 2018, doi: 10.1038/nri.2017.76. [16] S. Watcham, I. Kucinski, and B. Gottgens, “New insights into 1. Aspetti Generali
RkJQdWJsaXNoZXIy ODUzNzk5