277 4.Aspetti clinici ed assistenziali trasversali Bibliografia [1] M. Horowitz et al., “Epidemiology and biology of relapse after stem cell transplantation,” Bone Marrow Transplant., vol. 53, no. 11, pp. 1379–1389, Nov. 2018, doi: 10.1038/s41409-018-0171-z [2] D. W. H. Barnes, M. J. Corp, J. F. Loutit, and F. E. Neal, “Treatment of Murine Leukaemia with X Rays and Homologous Bone Marrow,” BMJ, vol. 2, no. 4993, ppa. 626–627, Sep. 1956, doi: 10.1136/bmj.2.4993.626 [3] G. Mathé et al., “Successful Allogenic Bone Marrow Transplantation in Man: Chimerism, Induced Specific Tolerance and Possible Anti-Leukemic Effects,” Blood, vol. 25, no. 2, pp. 179–196, Feb. 1965, doi: 10.1182/blood.V25.2.179.179 [4] A. M. Marmont et al., “T-cell depletion of HLA-identical transplants in leukemia,” Blood, vol. 78, no. 8, pp. 2120–2130, Oct. 1991 [5] M. M. Horowitz et al., “Graft-versus-leukemia reactions after bone marrow transplantation,” Blood, vol. 75, no. 3, pp. 555–562, Feb. 1990 [6] H.-J. Kolb, “Graft-versus-leukemia effects of transplantation and donor lymphocytes,” Blood, vol. 112, no. 12, pp. 4371–4383, Dec. 2008, doi: 10.1182/blood-2008-03-077974 [7] C. Schmid et al., “Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party,” J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., vol. 25, no. 31, pp. 4938–4945, Nov. 2007, doi: 10.1200/JCO.2007.11.6053 [8] K. Inoue et al., “Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia,” Blood, vol. 89, no. 4, pp. 1405– 1412, Feb. 1997 [9] D. I. van der Lee et al., “Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia,” J. Clin. Invest., vol. 129, no. 2, pp. 774–785, Feb. 2019, doi: 10.1172/JCI97482 [10] E. Goulmy et al., “Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation,” N. Engl. J. Med., vol. 334, no. 5, pp. 281–285, Feb. 1996, doi: 10.1056/NEJM199602013340501 [11] J. H. F. Falkenburg, L. van de Corput, E. W. A. Marijt, and R. Willemze, “Minor histocompatibility antigens in human stem cell transplantation,” Exp. Hematol., vol. 31, no. 9, pp. 743–751, Sep. 2003, doi: 10.1016/s0301-472x(03)00190-5 [12] K. Fleischhauer and D. W. Beelen, “HLA mismatching as a strategy to reduce relapse after alternative donor transplantation,” Semin. Hematol., vol. 53, no. 2, pp. 57–64, Apr. 2016, doi: 10.1053/j.seminhematol.2016.01.010 [13] L. Ruggeri et al., “Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants,” Science, vol. 295, no. 5562, pp. 2097–2100, Mar. 2002, doi: 10.1126/science.1068440 [14] A. Isidori et al., “The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment,” Expert Rev. Hematol., vol. 7, no. 6, pp. 807–818, Dec. 2014, doi: 10.1586/17474086.2014.958464 [15] M. Noviello et al., “Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT,” Nat. Commun., vol. 10, no. 1, p. 1065, 25 2019, doi: 10.1038/s41467019-08871-1 [16] T. J. A. Hutten et al., “Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation,” Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant., vol. 24, no. 4, pp. 666–677, 2018, doi: 10.1016/j.bbmt.2017.11.027 [17] N. Alhashim et al., “Extramedullary relapses after allogeneic stem cell transplantation for acute myeloid leukemia: clinical characteristics, incidence, risk factors and outcomes,” Bone Marrow Transplant., vol. 53, no. 7, pp. 838–843, 2018, doi: 10.1038/ s41409-018-0093-9 [18] L. Vago, “Clonal evolution and immune evasion in posttransplantation relapses,” Hematol. Am. Soc. Hematol. Educ. Program, vol. 2019, no. 1, pp. 610–616, Dec. 2019, doi: 10.1182/hematology.2019000005 [19] L. Vago et al., “Loss of mismatched HLA in leukemia after stem-cell transplantation,” N. Engl. J. Med., vol. 361, no. 5, pp. 478–488, Jul. 2009, doi: 10.1056/NEJMoa0811036 [20] L. Crucitti et al., “Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation,” Leukemia, vol. 29, no. 5, pp. 1143–1152, May 2015, doi: 10.1038/ leu.2014.314 [21] C. Toffalori et al., “Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation,” Nat. Med., vol. 25, no. 4, pp. 603–611, 2019, doi: 10.1038/s41591-019-0400-z [22] M. J. Christopher et al., “Immune Escape of Relapsed AML Cells after Allogeneic Transplantation,” N. Engl. J. Med., vol. 379, no. 24, pp. 2330–2341, 13 2018, doi: 10.1056/NEJMoa1808777 [23] V. Gambacorta et al., “Integrated Multiomic Profiling Identifies the Epigenetic Regulator PRC2 as a Therapeutic Target to Counteract Leukemia Immune Escape and Relapse,” Cancer Discov., vol. 12, no. 6, pp. 1449–1461, Jun. 2022, doi: 10.1158/21598290.CD-21-0980 [24] W. J. Norde et al., “PD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation,” Cancer Res., vol. 71, no. 15, pp. 5111–5122, Aug. 2011, doi: 10.1158/0008-5472.CAN-110108 [25] F. M. Uhl et al., “Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans,” Sci. Transl. Med., vol. 12, no. 567, p. eabb8969, Oct. 2020, doi: 10.1126/scitranslmed.abb8969 [26] R. Zeiser and L. Vago, “Mechanisms of immune escape after allogeneic hematopoietic cell transplantation,” Blood, vol. 133, no. 12, pp. 1290–1297, Mar. 2019, doi: 10.1182/blood-2018-10-846824
RkJQdWJsaXNoZXIy ODUzNzk5